
SHODH SANGAM -- A RKDF University Journal of Science and Engineering

ISSN No. 2581-5806 http://www.shodhsangam.rkdf.ac.in Vol.-04, No.-03, June-2021, Page 38

A Survey on Software Defect Prediction

Bhushan Bharti#1, Narendra Parmar*2, Gagan Sharma#3

#Department of Computer Science and Engineering, Sri Satya Sai College of Engineering

Bhopal, India
1bhushanbharti76@gmail.com

2 narendrapcst@gmail.com
3 deep_325@yahoo.com

Abstract— the demand for software quality has increased

tremendously in the last few years giving rise to other

concerns like software testing, defect prediction and

debugging. This is because software with defects cannot be

considered as good software. Having known the possible

location of the faults and defects and troubleshooting them

in time may save a good amount of time, manpower and

money. One of the best and cheapest ways would be to learn

from past mistakes to prevent future defects and problems.

Several algorithms of Data mining are applied to the various

software development tasks by Software Engineers and

experts to enhance the software quality & productivity and to

decrease the Cost and time of the project.

Keywords — Software Defects, Prediction, data mining,

classification, regression

I. INTRODUCTION

Although there is variety in the definition of software

quality, it is truly accepted that a project with many

defects lacks the quality of the software. Knowing the
causes of possible defects as well as identifying general

software process areas that may need attention from the

initialization of a project could save money, time and

working effort.

There have been several data mining methods for

analysis of defects over the last few years, but very few

of those techniques are capable of properly dealing with

the above mentioned concerns. Many analysts and

experts have been using different methods with multiple

combinations of various data sets to predict possible

faults. Software with defects is largely considered as
poor quality software. Software Experts and developers

use various algorithms of data mining to figure out

potential errors and bugs that can lead to software

failure in future.

Common Process of Software Defect Prediction

Software defect Prediction plays a very crucial role in

software development life cycle. A defect predictor is a

method or tool which helps in prediction of possible

defects in possible locations beforehand. As per the

experts a big part of the software development cost lies

in testing. Testing phase is as much as half of the

complete life cycle of the whole project. Therefore,

testing phase becomes our main challenge to find out

bugs, errors and defects and identify their proper
location before the actual testing of the software begins.

This helps the developers to effectively share their their

resources and resource person to those particular tasks.

II. LITERATURE SURVEY

Our main aim shall be to discuss the work done in the

area of software defect prediction and finding out

possible solutions to avoid or correct those defects and

faults. This is important because software with defects is

largely considered as poor quality software.

In 2006, Bibi, Tsoumakas, Stamelos, Vlahavas,
applied an approach of machine learning to the defects

estimation problem which they called as the Regression

via Classification (RvC) [1].The whole process of

Regression via Classification (RvC) comprises two

important stages

1. It is a method in which the problem of

classification is turned into a problem of

classification. The target values are converted

into classes using a process of discretization.

2. The class output is then reversed to find out

the prediction in numerical form.

Menzies, Greenwald, and Frank (MGF) [2] suggesting

in their research in 2007 where Rule Induction and

Naïve Bayes machine learning algorithms were

compared and their performances were analyzed to pre

determine the possible defects in components of

software under study.

In 2007, MLT(Multilayer Perceptron), Voting feature

Intervals(VFI) and NB were used by Oral and Bener [3]

for prediction of Embedded Software Defects using

seven sets of data for their research

In 2007, Iker Gondra [4] used a machine learning

methods for defect prediction. He used Artificial neural

network as a machine learner.

SHODH SANGAM -- A RKDF University Journal of Science and Engineering

ISSN No. 2581-5806 http://www.shodhsangam.rkdf.ac.in Vol.-04, No.-03, June-2021, Page 39

.

In 2011, CBA i.e. Classification based Association was

used or prediction of Defects in software by Baojun, Karel [5].

The rules generated for CBA-RG classification Association
Rules

III. SOFTWARE DEFECT PREDICTION CHALLENGES

Developing zero bug software for commercial purpose is

always a big challenge. Since licences and commercial

software do not share their data due to their policies it

becomes difficult to access all types of data set. Building

quality software defect prediction model with heterogeneous

dataset and cross project is quite difficult task [6]. It is always

a big challenge for developers to predict the defects with

software that require continuous updating as changes are made

to the codes quite often. Data sets are also often changing
which leads to difficulty in defect prediction. However,

proprietary datasets are not publicly available because of

privacy issue [7].

IV. DEFECT PREDICTION METRICS

Defect prediction metrics play the most important role to

build a statistical prediction model. Most defect prediction

metrics can be categorized into two kinds: code metrics and

process metrics. Code metrics are directly collected existing

source code while process metrics are collected from historical

information archived in various software repositories such as
version control and issue tracking systems[8].

a. Code Metrics

Code metrics also known as product metrics measure

complexity of source code. Its ground assumption is

that complexity source is more bug-prone. To measure

code complexity, researchers proposed various metrics.

b. Process Metrics

Below is the list of seven representative process

metrics that are often used in developing prediction

model. [9][10][11][12][13]

1. Relative Code Change Churn

2. Change Metrics

3. Change Entropy

4. Code Metric Churn/Code Entropy

5. Popularity

6. Ownership and authorship
7. Micro Interaction Metrics.

There are lots of debates if code metrics are good defect

predictors and process metrics are better than code metrics.

Menzies et al. confirmed that code metrics are still useful to

build a defect prediction model [2]. However, according to

Rahman et al.’s recent study comparing code and process

metrics, code metrics is less useful than process metrics

because of stagnation of code metrics [14].

V. GENERAL PROCESS OF SOFTWARE DEFECT PREDICTION

To build an efficient prediction model, we should have

proper data on defects and metrics, which can be accumulated

from software development efforts to use as the learning set.

Thus, there is trade-off between its prediction performance on

additional data sets and how well this model fits in its learning
set. Therefore, the performance of the model is assessed by the

comparison of the predicted defects of the modules in a test,

against the actual defects witnessed [15]

The steps involved in Software Defect Prediction Process

are as follows.

1. Labelling.

2. Extracting features and creating training data sets.

3. Develop a prediction model.

4. Final Assessment.

VI. APPLICATIONS OF DEFECT PREDICTION

One of significant objectives of defect prediction models is
efficient utilization of available resources for assessing and

testing programming modules. Nevertheless, there is only

a hand few of contextual analyses which use defect

prediction models [16]. Thus, Rahman et al. [17] led most

of their investigation on cost-viability. Lewis pioneered a

recent contextual investigation directed by Google, which

compares the BugCache and Rahman's technique, with

respect to the amount of closed bugs[18]. The outcomes

have indicated that the designers favored Rahman's

technique. In any case, the defect prediction models do not

give any advantages to the developers. In a recent survey,
Rahman et al demonstrated that defect prediction models

could be useful to organize potential warnings discovered

by the bug finders, for example, FindBug. It also helps in

implementation of results from the defect prediction to

organize or choose appropriate test cases. In regression

testing, performing all the test cases are not financially

feasible, and consumes large amount of time as well.

Therefore, it is best to choose proper test cases, which

investigates the potential faults in the system [19]. The

results of the defect prediction models can provide an idea

on the potential bugs and their severity, which can be

exploited to select and prioritize the test cases. On the
basis of previously reviewed works, it is obviously that the

area of defect prediction has more to offer, and hence, it is

in its early stages. It can be concluded with few of the

future improvements and limitation, which can be

extracted from past research works.

 Software defect prediction aims to reduce software

testing efforts by guiding testers through the defect-prone

sections of software systems. Defect predictors are widely

used in organizations to predict defects in order to save

time and effort as an alternative to other techniques such as

manual code reviews.

VII. CONCLUSION

This survey paper helps the researchers to study about

software defects and software defect prediction techniques.

To implement the data pre-processing technique; data

cleaning, data normalization and data discretization will be

performed in data mining. For feature extraction and

SHODH SANGAM -- A RKDF University Journal of Science and Engineering

ISSN No. 2581-5806 http://www.shodhsangam.rkdf.ac.in Vol.-04, No.-03, June-2021, Page 40

selection to implement of new approach, to implement of

evolutionary computation and optimization technique for best

feature selection and to implement machine learning

classification techniques for bug classification. An improved

approach consists of data pre-processing low computation
cost, complex model, software defect prediction comparative

analysis and improved classification performance of the

system

VIII. REFERENCES.

1. S Bibi, G Tsoumakas, I Stamelos, and I Vlahavas.

Software defect prediction using regression via

classification. In IEEE International Conference on, pages

330–336, 2006.

2. Tim Menzies, Jeremy Greenwald, and Art Frank. Data

mining static code attributes to learn defect predictors.

Software Engineering, IEEE Transactions on, 33(1):2–13,
2007

3. Ata¸c Deniz Oral and Ay¸se Ba¸sar Bener. Defect

prediction for embedded software. In Computer and

information sciences, 2007. iscis 2007. 22nd international

symposium on, pages 1–6. IEEE, 2007.

4. Iker Gondra. Applying machine learning to software

fault-proneness prediction. Journal of Systems and

Software, 81(2):186–195, 2008.

5. Ma Baojun, Karel Dejaeger, Jan Vanthienen, and Bart

Baesens. Software defect prediction based on association

rule classification. Available at SSRN 1785381, 2011.

6. S. J. Pan and Q. Yang. A survey on transfer learning.

IEEE Trans. on Knowl. and Data Eng., 22:1345–1359,

October 2010

7. F. Peters and T. Menzies. Privacy and utility for defect

prediction: Experiments with morph. In Proceedings of

the 34th International Conference on Software

Engineering, ICSE ’12, pages 189–199, Piscataway, NJ,

USA, 2012. IEEE Press

8. S. D. Conte, H. E. Dunsmore, and V. Y. Shen. Software Engineering

Metrics and Models. Benjamin-Cummings Publishing Co., Inc.,

Redwood City, CA, USA, 1986.

9. N. Nagappan and T. Ball. Use of relative code churn
measures to predict system defect density. In Proceedings

of the 27th international conference on Software

engineering, ICSE ’05, pages 284–292, 2005.

10. R. Moser, W. Pedrycz, and G. Succi. A comparative

analysis of the efficiency of change metrics and static

code attributes for defect prediction. In Proceedings of the

30th international conference on Software engineering,

ICSE ’08, pages 181–190, 2008

11. A. E. Hassan. Predicting faults using the complexity of

code changes. In Proceedings of the 31st International

Conference on Software Engineering, ICSE ’09, pages
78–88, 2009.

12. M. D’Ambros, M. Lanza, and R. Robbes. An extensive

comparison of bug prediction approaches. In Mining

Software Repositories (MSR), 2010 7th IEEE Working

Conference on, pages 31 –41, May 2010.

13. A. Bacchelli, M. D’Ambros, and M. Lanza. Are popular

classes more defect prone? In Proceedings of the 13th

International Conference on Fundamental Approaches to

Software Engineering, FASE’10, pages 59–73, Berlin,

Heidelberg, 2010. Springer-Verlag

14. F. Rahman and P. Devanbu. How, and why, process

metrics are better. In Proceedings of the 2013

International Conference on Software Engineering,
ICSE ’13, pages 432–441, Piscataway, NJ, USA, 2013.

IEEE Press.

15. Hewett, R. 2011. Mining software defect data to support

software testing management. Applied Intelligence, 34,

245–257.

16. Lewis, N.D. 1999. Assessing the evidence from the use of

SPC in monitoring, predicting & improving software

quality. Computers & Industrial Engineering, 37, 157–

160.

17. Rahman, F., Posnett, D., Devanbu, P. 2012, November.

Recalling the imprecision of cross-project defect

prediction. In Proceedings of the ACM SIGSOFT 20th
International Symposium on the Foundations of Software

Engineering, 61. ACM.

18. Peters, F., Menzies, T., Marcus, A. 2013, May. Better

cross company defect prediction. In Proceedings of the

10th Working Conference on Mining Software

Repositories, 409–418. IEEE Press

19. Lessmann, S., Baesens, B., Mues, C., Pietsch, S. 2008.

Benchmarking classification models for software defect

prediction: A proposed framework and novel findings.

IEEE Transactions on Software Engineering, 34, 485–

496.

Copy protected with Online-PDF-No-Copy.com

https://online-pdf-no-copy.com/?utm_source=signature

