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Abstract — Brain-Computer Interfaces (BCIs) represent a 

cutting-edge technology that facilitates direct communication 

between the human brain and external devices, enabling 

individuals to control devices through neural signals alone. 

This paper reviews the evolution and current state of EEG-

based BCIs, beginning with Hans Berger's pioneering work 

in electroencephalography (EEG) and progressing through 

modern applications and methodologies. Key aspects covered 

include the acquisition of EEG signals, analysis techniques 

for extracting meaningful data, and the role of machine 

learning algorithms in signal classification and 

interpretation. The review identifies challenges such as signal 

noise and variability, and discusses recent advancements 

aimed at enhancing BCI accuracy and reliability. 

Additionally, the paper explores emerging trends in non-

invasive BCI technologies, such as EMG, fMRI, and NIRS, 

highlighting their potential to broaden BCI accessibility and 

usability across various domains. By synthesizing current 

research findings and outlining future directions, this review 

contributes to the ongoing development and adoption of EEG-

based BCIs in healthcare, assistive technology, and beyond. 
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I. INTRODUCTION 

The field of Brain–Computer Interfaces (BCIs) traces its 

origins to Hans Berger, who pioneered the study of electrical 

activity in the human brain through the development of 

electroencephalography (EEG). In 1924, Berger achieved a 

milestone by recording EEG signals directly from the human 

brain for the first time. Through his analysis of these signals, 

Berger identified oscillatory brain activity, including the alpha 

wave (8–12 Hz), which became known as Berger's wave. 

Initially, Berger used a rudimentary recording device that 

involved inserting silver wires under patients' scalps. This early 

method evolved as silver foils attached with rubber bandages 

replaced the wires. However, initial attempts using a Lippmann 

capillary electrometer proved disappointing. Success came with 

more advanced equipment like the Siemens double-coil 

recording galvanometer, capable of displaying electric voltages 

as minuscule as one ten-thousandth of a volt. Berger's research 

focused on correlating changes in EEG wave patterns with 

various brain disorders, opening up new avenues for studying 

human brain activity through EEGs. These developments 

marked a significant advancement in understanding brain 

functions and laid the foundation for future innovations in the 

field of neuroscience and BCIs. 

There are several types of brain-computer interfaces that are 

reported. The basic purpose of these devices or types is to 

intercept the electrical signals that pass between neurons in the 

brain and translate them to a signal that is sensed by external 

devices. 

 

Figure 1 Types of BCI 

A. Brain Computer Interface Structure 

To advance a basic notion of BCI, the insignificant data on 

brain jobs and conditions is fascinating. This chapter deals with 

completely different methods of observing the brain with their 

fundamental differences and advantages. 

The electromagnetic pulse generated by neurons allows us to 

observe the practicality of the brain. Considering some 

properties of the detected brain signal, it is determined based on 

the person's activity, that is, whether the person is sleeping or 

not. Completely different sleep stages have been found to 

generate different electromagnetic signals. Furthermore, 

thinking about very different things like emotions, activities or 

relaxation also signals changes in one way or another. BCI is 

based on these differences which allow control of the computer. 

A brain-computer interface (BCI) could be a means of 

communication that allows a person to send commands to a 

device only through brain activity. And that is why they claim 

that it is the only means of communication for people with 

certain motor disabilities. The purpose of a BCI is to "read" the 

user's intention, which is usually done with classifiers that 

illustrate brain signal readings and translate them into a 

category from a set of states or intentions. 
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Figure 2 BCI structure 

It is especially important for people with ALS, stroke, brain 

or spinal cord injury, cerebral palsy, muscular dystrophy, and 

multiple sclerosis. However, considering the EEG-based BCI 

would allow for faster communication if a person could still use 

a muscle to correspond. Therefore, the only people who 

actually benefit from such research are those who suffer from 

these or similar diseases. BCIs differ in their signal acquisition 

system, which can be invasive or non-invasive, or in their signal 

evocation pattern, which can be exogenous or endogenous (how 

a person is encouraged to generate preferred signals). 

Such evoked potentials are fluctuations in voltage 

dimensions that occur suddenly within the subject or after some 

(exogenous) event such as a visual stimulus (Event-Related 

Potential ERP). The universal structure of a BCI system can be 

seen in Figure 1.3. It can be divided into three parts: 

 Signal acquisition, which creates an electronic 

representation of a subject by recording its signals. 

 Signal processing, which modifies data to enable the use 

of capabilities. After that, he converts it into a 

demonstration that can be used to operate a gadget. For 

instance, using a classifier that accepts the attributes as 

input and outputs a value for each class, which may then 

be processed or interpreted as a command. 

 The algorithm that gives out the commands in the end. 

II. LITERATURE REVIEW  

Lotte, F., et. al. (2015) [9] Brain-Computer Interfaces (BCIs) 

are advanced systems designed to translate brain activity 

patterns into actionable commands for interactive applications, 

primarily utilizing Electroencephalography (EEG). This article 

provides a comprehensive overview of EEG-based BCIs, 

focusing on their engineering aspects. It discusses foundational 

neuroscience concepts related to brain signal capture and 

processing, emphasizing signal processing techniques and 

machine learning algorithms for pattern recognition. The 

review also highlights challenges such as signal quality and 

user training, proposing future directions for enhancing BCI 

performance and usability across diverse applications in 

healthcare and human-computer interaction. 

Rasheed, S. (2021) [10] This review explores the role of 

machine learning (ML) in Brain-Computer Interfaces (BCIs), 

covering various studies in the field. It discusses ML techniques 

for classifying emotions, detecting mental states, and analyzing 

EEG and event-related potential (ERP) signals in BCI 

applications. The article provides a comparative analysis of 

methodologies for feature extraction and classification, aiming 

to advance the integration of ML in BCI technology and 

improve application effectiveness. 

Rashid, M., et. al. (2020) [11] This article provides an 

overview of contemporary Brain-Computer Interface (BCI) 

concepts beyond medical applications. It reviews EEG-based 

BCI systems, emphasizing electrophysiological control 

properties, extraction algorithms, and performance assessment. 

The review identifies current challenges in BCI systems and 

proposes solutions to enhance their functionality and reliability, 

showcasing the evolving landscape and potential future 

directions of BCI research. 

Värbu, K. et. al. (2022) [12] Focused on EEG-based BCIs, 

this systematic review evaluates applications from 2009 to 

2019 using the PRISMA model. It categorizes research into 

clinical and non-clinical domains, highlighting signal 

processing techniques and equipment used for EEG data 

collection. The review identifies current challenges and future 

opportunities in the field, emphasizing the broadening impact 

of EEG-based BCIs in both medical treatments and enhancing 

the lives of healthy individuals through collaborative and 

personal development applications. 

Ghumman, M.K., et. al. (2021) [13] This study explores 

Brain-Computer Interfaces (BCI) as a technology predicting 

user emotions and facilitating direct brain communication with 

external devices using EEG. It details EEG-based BCI systems, 

focusing on signal acquisition, preprocessing, and classification 

techniques. The research proposes an artifact removal method 

using Independent Component Analysis (ICA) and feature 

extraction through Filter Bank Common Spatial Pattern 

(FBCSP), demonstrating improved classification accuracy with 

Support Vector Machines (SVM) and other classifiers. 

Tang, X., et. al. (2023) [14] Addressing limitations of current 

BCI technologies, this article explores flexible electronics to 
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develop next-generation Brain-Computer Interfaces. It 

examines the compatibility of current electronic devices with 

brain structure and explores flexible, stretchable, and soft 

electronics in neuroscience and bioelectronic medicine 

applications. The study discusses design challenges and 

integration issues, highlighting the potential advantages of 

flexible hardware in enhancing the effectiveness and usability 

of BCIs. 

Mridha, M.F. et. al. (2015) [15] This comprehensive 

overview of Brain-Computer Interfaces (BCIs) discusses 

various applications and technological components, including 

sensors and algorithms. It highlights the evolution of BCI 

research and identifies ongoing challenges in the field, 

emphasizing the need for integrated approaches to improve 

system performance and user interaction across different 

applications. 

Gonzalez-Astudillo, J., et. al. (2021) [16] Focused on 

improving Brain-Computer Interface (BCI) effectiveness, this 

review explores network theory to understand brain activity 

patterns. It discusses advancements in graph analysis and 

statistical modeling for interpreting neuroimaging data, aiming 

to enhance BCI usability and effectiveness by analyzing 

functional brain connections and their implications for 

cognitive function and human-machine interaction. 

Ramadan, R.A., et. al. (2015) [17] Highlighting the 

transformative potential of Brain-Computer Interfaces (BCIs), 

this article emphasizes their role in enabling direct brain-

computer communication for applications such as wheelchair 

control and cognitive simulation. It provides insights into brain 

anatomy relevant to BCI operation and details hardware and 

software components essential for constructing and operating 

effective BCIs, highlighting their impact on enhancing 

accessibility and advancing AI research.it. 

III.  OBJECTIVES   

The aim of this study was to contribute to the expanding field 

of Brain-Computer Interfaces (BCI) without relying on existing 

literature. By focusing on the specific modality of 

electroencephalography (EEG), the objective was to deepen 

insights into neurophysiological processes that could be 

harnessed through BCI systems [1-5]. In the progressive 

development of BCI systems, it became crucial to 

conceptualize and execute a comprehensive system. A 

thorough grasp of methods for acquiring EEG data, the 

characteristics of EEG waveforms, and techniques for signal 

processing to extract features and classify them was deemed 

essential prior to embarking on BCI system design and 

implementation. The key objectives of this project were: 

 To study a neurophysiological understanding of the human 

brain. 

 To study electroencephalography as a means of identifying 

mental activity. 

 Provide a comprehensive overview of the EEG-based BCI 

systems that have been implemented so far. 

 Compare the performance of different feature 

classification methods. 

 To discuss the future of BCI technology. 

IV.  METHODOLOGY 

This survey aims to categorize different hand and leg 

movement tasks, outlined in Figure 4.1. The methodology is 

structured into four main stages. Initially, EEG data is recorded 

in the first phase. Subsequently, in the second stage, the signal 

undergoes preprocessing to eliminate unwanted noise and 

extraneous data. Following noise removal, the third stage 

involves extracting key features from the EEG signals. Finally, 

in the fourth stage, the EEG signals are mapped to 

corresponding movements, specifically ‘hand and leg’ 

movements. The flowchart depicted.  

 

 

Figure 3 Proposed methodology analysis of EEG signals 

A. Signal Acquisition 

The dataset originates from Project BCI, which is a 

registered study including right-handed men aged 21 who do 

not have any known medical issues. With the eyes closed, the 

EEG is composed of actual, haphazard movements of the right 

and left hands. An electrode is represented by each line. FP1 

FP2 F3 F4 C3 C4 P3 P4 O1 O2 F7 F8 T3 T4 T5 T6 FZ CZ PZ 

is the electrode order. Using a chain link, the Neuroma EEG 

device was used to record at 500 Hz. The EEG survey was used 

as a standard reference for exporting the data. In this nation, 

power lines run at 50 Hz. 

In this research work the following movements are used for 

the analysis: 

1. Three instances of the left hand moving forward 

2. Three instances of the left hand moving backward 

3. Three instances of the left hand moving forward 

4. Three instances of the left hand moving forward 

5. A single left leg movement occurrence  

6. One movement of the right leg 

B. Pre-processing 

Noise cancellation is necessary since the obtained EEG data 

is often noisy. In order to eliminate undesired artifacts, the EEG 

signals were filtered using a Butterworth filter and a band pass 

filter between 8 and 25 Hz. A predefined frequency band is 

passed through a band pass filter. Combining a high pass and 

low pass filter allows for this. 
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Figure 4 Bandpass Filter 

In the typical first order low pass along with high pass filter 

circuits, the upper corner point (̒H) and the lower corner 

frequency limit point (ƒL) are computed in the same way. 

Naturally, in order to prevent any interaction between the low-

pass and high-pass phases, there must be a suitable distance 

between the two breakpoints. In addition, the amplifier 

establishes the circuit's overall voltage gain and offers isolation 

between the two stages. 

 

Figure 5 Response of Band Pass Frequency 

 

Figure 6 Signal of Left-Hand Movement, Both Original and Filtered 

 

Figure 7 Original and Filtered Left Leg Movement Signal 

In addition to having consistent sensitivity to the target 

frequencies, the perfect electrical filter should totally suppress 

undesirable frequencies. Reducing the frequency range 

employed, the number of channels (channel selection), and the 

number of functions with the help of a band-pass filter directly 

affects execution time and memory use, which enhances system 

performance. 4.5 for the dataset on hands and legs. 

C. Feature Extraction 

After denoising the EEG dataset, discrete wavelet transforms 

(DWTs) are utilized within specific frequency bands. To handle 

the substantial and intricately detailed EEG input data 

effectively, condensing it into a concise and informative feature 

vector is essential. This process, known as feature extraction, 

focuses on extracting essential signal attributes to shorten the 

vector length while retaining critical information. The discrete 

wavelet transform accomplishes this by examining signal 

properties across various scales using high-pass and low-pass 

filters. The resulting wavelet coefficients encompass both 

approximation and detail coefficients, which are pivotal for 

further analysis and understanding of the signal's characteristics. 

 Decompose the signal into N levels using filtering and 

decimation with DWT to obtain the approximation and 

detailed coefficients. 

 Extract features from the coefficients obtained through 

DWT. 

From these DWTs, valuable information is extracted that 

serves to streamline the dimensionality of its functionality. 

Specifically, the analysis yields ten distinct metrics or 

characteristics, including mean, median, variance, standard 

deviation, asymmetry, kurtosis, complexity, and mobility, each 

contributing to a comprehensive understanding and 

interpretation of the data. 

Mean: A set of values' center or focal point is related to its 

mean. The average is considered for every single sub-band 

signal. 

(Mean =
1

N ∑ Xin
i=1

) (4.1) 

Median: The median divides a sample of data or a 

probability distribution into two equal halves, separating the 

upper and lower portions. In simpler terms, it can be seen as the 

midpoint or "average" value of the dataset. 

Variance is calculated as the average of the squared 

differences from the mean 

(σ = (x + a)n = ∑ (X − µ)2/N
n

i=1
) (4.2) 

Standard deviation: Standard deviation provides a 

straightforward measure of the variability within a dataset. It 

quantifies the root mean square (RMS) deviation of values from 

the mean. 

(std = √(∑ (Xi − X)2)
n

i=1
)/N − 1) (4.3) 

Skewness: Asymmetry refers to the extent of asymmetry in 

the probability distribution of a real-valued random variable 

relative to its mean value [15,16]. This measure can be positive, 

negative, or indefinite. 

(skewness =  E[(X − µσ)3) (4.4) 

Kurtosis: ‘Kurtosis’ quantifies the relative pawedness or 

‘flatness of a distribution’ in comparison to the normal 

distribution: 
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(kurtosis = µ4 /σ4) (4.5) 

where µ4 represents the fourth moment about the mean and σ 

is the standard deviation. 

Complexity: The ‘complexity parameter indicates’ the 

‘variation in frequency’. 

Complexity = Mobility(
dy(t)

dt
)/Mobility(y(t)) (4.6) 

Mobility: The ‘mobility parameter’ indicates the ‘mean 

frequency’ or the ratio of the standard deviation of the ‘power 

spectrum’. 

(Mobility =  √var(
dy(t)

dt
)/var(y(t))) (4.7) 

An example of all extracted features is presented in Table 

4.1. 

Table 1 Sample of ‘extracted features’ from (EEG) signals for hand and leg movement 

(Class) (Left Hand) (Right Hand) (Left Leg) (Left Hand) (Right Leg) 

‘Mean’ 4735.07 -5320.43 4644.96 -3962.4 3887.815 

‘Median’ 2.192113 1.891534 2.396905 -2.30394 1.948793 

‘Variance’ 4.90E+08 3.83E+08 3.87E+18 3.75E+08 3.76E+08 

‘Standard 

Deviation’ 
19757.77 19556.13 19405.17 29334.16 19367.16 

‘Skewness’ 2.947909 -2.9764 2.116666 -2.95751 2.897447 

‘Kurtosis’ 8.71422 8.73124 8.103585 8.820168 8.612353 

‘Mobility’ 2.41596 2.43423 2.4201 2.45956 2.43797 

‘Complexity’ 2.068747 2.137758 2.146357 2.11742 2.04131 

D. Feature Classification 

After acquiring the characteristics, they are assembled 

into a vector for practical application. The dataset at hand 

is initially divided into either a training set or a test set. 

Once separated, the classifier is employed on the training 

data to formulate classification rules for each report. 

Subsequently, the test set is utilized to ‘classify the data’. 

The ‘classification utilizes’ a ‘stacked deep’ autoencoder. 

E. Stacked Deep Autoencoder 

A deep ‘stacked autoencoder’ is formed by combining 

multiple levels of autoencoders, each consisting of 

cascaded encoding layers along with a SoftMax classifier. 

Unlike supervised networks, self-encoding networks do 

not require labeled data during the learning phase. The 

fundamental structure of an unsupervised autoencoder 

‘typically includes’ an ‘input layer’, one or more hidden 

layers, and an ‘output layer’. 

Autoencoders serve various purposes such as pre-

training and dimensionality reduction, especially when 

designed with a bottleneck architecture. For example, by 

stacking more hidden layers, an autoencoder with a single 

hidden layer can gradually acquire hierarchical 

representations. This algorithm functions as a feature 

extraction tool, aiding in the discovery of meaningful data 

representations that often surpass the original data points 

in clarity and relevance. 

 

Figure 8 Architecture of Stacked Deep Auto Encoders 

The ‘deep autoencoder’ comprises three layers: an 

‘input layer, a hidden layer, and an output layer. The input 

layer receives and processes input values. The 

computations within the hidden layer are determined by 

the following formula: 

𝑋̂ = ∑ 𝑊 ∗ 𝑋𝑖 + 𝐵𝑖  
(4.8) 

‘where W is the weight matrix and  

X is the input data values from the input layers. 

The Bias Matrix is B= 

Moreover, the transfer function is computed 

𝑓(𝑥) =
1

1 + 𝑒−𝑦
 

(4.9) 

Where, e=error value 

The loss function that needs to be minimized in the 

stacked deep autoencoder neural network consists of 
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numerous layers of autoencoders. It is expressed as 

follows: 

𝑙𝑜𝑠𝑠𝑚𝑖𝑛

= |𝑋 − (𝑊1𝜃(𝑊2𝜃 … … … . (𝑊𝑙(𝑓(𝑥)))))| 
(4.10) 

Where W1, W2...Wl is the total autoencoders' weight 

function. 

θ = Autoencoders' decoding function f(x) = function to 

compute data values at each layer 

F. SoftMax classifier 

The SoftMax function is widely used in the field of 

machine learning; it gives each output option a score that 

is then transformed into a probability utilizing the 

SoftMax function. Default output level for a 

classification task with more than two classes is SoftMax. 

With this level, which is the most recent, one may 

forecast a ‘discrete probability distribution’ between 

classes. 

G. Proposed Algorithm 

{left hand movement, right hand movement, left leg 

movement, and right leg movement} is the output 

labeled {dataset}. 

Step 1: Find feature vector (V) for each instance in D. 

Step2: Perform each V 

Step 3: Categorization of Data 

Step 4: ‘Determine the total class label’ 

Locate the ‘True Positive’ (TP) 

True Negative (TN) 

False positives (FP) 

False negative (FN) 

Step5: Locate the end performance parameters for 

H. Confusion Matrix 

This unique table arrangement lets you see how well 

an algorithm performs. Here, the confusion matrix shows 

how well the suggested method performs. It is clear from 

the term "confusion" whether two classes are being 

confused by the system. There are two dimensions to this 

matrix: actual and planned H. This is a two-row, two-

column table used in predictive analytics that shows the 

quantity of true positives, true negatives, false positives, 

and false negatives. 

TP indicates when a condition is present and FN 

indicates when a condition is not present. 

FP = Identifies the absence of a condition, TN = 

Doesn't recognize a condition when it doesn't exist 

The confusion matrix is used to determine the 

outcomes of four cells.  

The matrix of confusion for hand movement prediction 

is explained in the following figure 4.7. The training data 

set is used to evaluate the test set, i.e., H. The actual and 

expected values are compared. 

 When the actual and was expecting motion values 

coincide, the condition is said to be true positive 

(TP), or 1. 

 When the expected and actual values of the non-

movement match, that is, H. 0, the condition 

becomes true negative (TN). 

 When confusion results from a discrepancy between 

the actual and predicted values of motion and non-

motion, such as in B. 1 and 0, the condition is 

deemed false negative (FN). This is a precarious 

scenario. 

 When confusion emerges and the real and expected 

values of motion and non-motion do not match, the 

condition becomes false positive (FP), as in the case 

of B. 0 and 1. There is uncertainty about this case. 

 

Figure 9 Confusion Matrix 

I. Performance Evaluation Parameters 

Accuracy 

This metric, which represents the percentage of 

‘recognition accuracy’ for each known test input to the 

entire amount of trained data, is provided by: 

(Accuracy = (TP + TN)/TP + TN + FP + FN) (4.11) 

Precision 

It is defined as the proportion of each class's accurately 

recognized motions to all classes' properly recognized 

movements, and it is provided by: 

(Precision =
TP

TP + FP
) (4.12) 

Recall 

The number of right answers divided by the total 

number of results that ought to have been returned is 

known as recall. 

(Recall =
TP

(TP+FN
) (4.13) 

F-Measure 

The precision rate plus recall combined merit is known 

as the F-Measure. This element was used to assess the 

implementation's performance in order to determine the 

system's overall performance in terms of accurate 

outcomes, or by excluding incorrect recognition 

observations. The result is provided by: 

F-Measure= 2 * [(precision * recall) / (precision 

+ recall)] 
(4.14) 

V. SIMULATION AND RESULT ANALYSIS 

This chapter includes a numerical and analytical 

explanation of a suggested algorithm for simulated hand 

and leg movements in order to determine the suggested 

method's performance. 

To assess the effectiveness of the suggested ‘algorithm 

scheme’, the suggested algorithm is simulated using the 

subsequent ‘configuration’: 

Software Prerequisite 
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‘MATLAB’-8.3.0 32/64-bit ‘Windows Operating System’ 

Platform 

Hardware Prerequisite 

2.50GHz Intel Core i5-3210M CPU with 1 GB of RAM 

512 Hard Disk 

A. Description of Dataset 

This research uses a dataset from the ‘BCI project’ for 

a 21-year-old man's EEG signal, which includes ‘left 

hand, right hand, and leg movement signals’, to simulate 

the suggested methods. The following data were 

collected for the simulation:  

 ‘Left hand forward movement’ 

 ‘Left hand backward movement’ 

 ‘Left hand forward movement’ 

 ‘Left hand forward movement’ 

 ‘Left leg movement’ 

 ‘Right leg movement’ 

B. Result Analysis 

The performance of several classifiers, including 

(SVM, KNN, RF), Neural Network, Naïve Bayes, and 

‘Stacked Deep auto Encoder’, is analyzed in order to 

determine the results. The EEG hand and leg movement 

dataset is first cleaned in order to assess the performance 

of these classifiers. 

By removing unnecessary noise, the dataset is made 

clean using the "Butterworth filter." Once more features 

have been extracted from the cleaned dataset, it is divided 

into two groups: the training set and the testing set. For 

more efficient result analysis, the training and testing 

ratios are divided into 60:40, 70:30, and 80:20 ratios, 

respectively. 

Table 2 Average Performance Assessment with a 60:40 ‘Training and Testing Split’ 

Techniques Accuracy (in %) Precision (in %) Recall (in %) 

Support Vector Machine 82.542 75.338 53.534 

k-Nearest Neighbour 83.904 78.1646 76.476 

Random Forest 82.696 64.404 64.404 

Neural Network 77.778 44.458 31.648 

Naïve Bayes 64.674 58.664 94.186 

Stacked DeepAuto Encoder 87.194 83.51 99.966 

 

Figure 10 Average Performance Assessment for Training and 

Testing Ratio of 60:40 

The stacked deep autoencoder consistently 

outperforms other classifiers in terms of performance. 

This analysis was conducted using five different testing 

datasets, with average metrics calculated for the 60:40 

training and testing ratio dataset. The stacked deep 

autoencoder achieved approximately 87% accuracy and 

approximately 83% precision, marking the highest scores 

among all classifiers evaluated. 

Similarly, Table3 displays accuracy results for various 

classifiers using the 70:30 training and testing ratio 

dataset. The findings demonstrate that the stacked deep 

autoencoder consistently achieves superior accuracy 

across all dataset categories, with performance improving 

as the training ratio increases. This highlights that 

increasing the training ratio enhances the classifier's 

overall accuracy. 

Table 3 Average Performance Evaluation for 70:30 Training and Testing Ratio 

Techniques Accuracy (in %) Precision (in %) Recall (in %) 

Support Vector Machine 83.00522 76.7 54.514 

k-Nearest Neighbour 84.97 79.55 73.256 

Random Forest 82.748 64.504 64.504 
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Neural Network 78.462 47 27.884 

Naïve Bayes 65.73 59.35 95.156 

Stacked DeepAuto Encoder 91.386 88.396 99.96 

 

Figure 11 Average Evaluation of Performance for Training 

provided and Testing Ratio of 70:30 

Figure 11 shows the performance evaluation graph 

comparing the proposed classifier with existing ones, 

indicating that the stacked deep autoencoder exhibits 

superior performance. The analysis included testing on 

five distinct datasets, and the average results were used 

for the 70:30 ratio dataset. Of all the classifiers tested, the 

stacked deep automatic encoder had the best accuracy 

and precision, achieving about 90% and 87%, 

respectively. 

Table 4 Average Performance Evaluation for 80:20 Training and Testing Ratio 

Techniques Accuracy (in %) Precision (in %) Recall (in %) 

Support Vector Machine 83.056 76.366 54.552 

k-Nearest Neighbour 85.054 79.642 73.5 

Random Forest 82.678 64.366 64.366 

Neural Network 78.81 49.556 34.23 

Naïve Bayes 65.434 59.996 95.132 

Stacked DeepAuto Encoder 91.446 88.452 99.982 

 

Figure 12 Average Performance Evaluation for 80:20 Training 

and Testing Ratio 

Figure 12 depicts the performance evaluation graph 

comparing the proposed classifier with existing ones, 

highlighting the superior performance of the stacked deep 

autoencoder. The analysis involved testing on five 

distinct datasets, and the average results from these 

datasets were considered for the 80:20 ratio dataset. The 

stacked deep autoencoder achieved approximately 91% 

accuracy and approximately 87% precision, surpassing 

all other classifiers in these metrics. 

 

 

VI. CONCLUSION 

EEG-based BCIs have evolved significantly since 

their inception, driven by advancements in EEG 

technology, signal processing algorithms, and machine 

learning techniques. This review has provided a 

comprehensive overview of the historical development 

and current landscape of EEG-based BCIs, emphasizing 

their role in enhancing accessibility and functionality for 

users with disabilities. The comparative analysis of 

classification algorithms underscores the potential of 

advanced methods like Stacked Deep Autoencoder in 

improving the accuracy and robustness of BCI systems. 

Looking ahead, ongoing research efforts in non-invasive 

BCI technologies promise to address current limitations 

and expand the application scope of BCIs in everyday life. 

By fostering interdisciplinary collaboration and 

innovation, EEG-based BCIs are poised to continue 

transforming human-computer interaction, paving the 

way for novel applications in healthcare, gaming, and 

neuro-rehabilitation. 
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